Wavelet Bi-frames with few Generators from Multivariate Refinable Functions
نویسندگان
چکیده
Using results on syzygy modules over a multivariate polynomial ring, we are able to construct compactly supported wavelet bi-frames with few generators from almost any pair of compactly supported multivariate refinable functions. In our examples, we focus on wavelet bi-frames whose primal and dual wavelets are both derived from one box spline function. Our wavelet bi-frames have fewer generators than comparable constructions available in the literature.
منابع مشابه
Construction of Multivariate Compactly Supported Tight Wavelet Frames
Two simple constructive methods are presented to compute compactly supported tight wavelet frames for any given refinable function whose mask satisfies the QMF or sub-QMF conditions in the multivariate setting. We use one of our constructive methods in order to find tight wavelet frames associated with multivariate box splines, e.g., bivariate box splines on a three or four directional mesh. Mo...
متن کاملFramelets with Many Vanishing Moments
We study tight wavelet frames associated with given refinable functions which are obtained with the unitary extension principles. All possible polynomial symbols generating refinable functions and admitting framelets with a given number of vanishing moments are found. We also consider constructions of (anti)symmetric framelets generated by a symmetric refinable function. We give a few examples ...
متن کاملSome Smooth Compactly Supported Tight Framelets Associated to the Quincunx Matrix
We construct two families of tight wavelet frames in L2(R) associated to the quincunx matrix. The first family has five generators and the second has only three. The generators have compact support, any given degree of regularity, and any fixed number of vanishing moments. Our construction is made in Fourier space and involves some refinable functions, the Oblique Extension Principle, and a sli...
متن کاملPopular Wavelet Families and Filters and Their Use
Glossary 5 Introduction 6 Definition of Wavelets 7 Definition of Filters 8 Multi-Resolution Analysis 9 Wavelet Decomposition and Reconstruction 10 Refinable Functions 11 Compactly Supported Orthonormal Wavelets 12 Parameterization of Orthonormal Wavelets 13 Biorthogonal Wavelets 14 Prewavelets 15 Tight Wavelet Frames 16 Tight Wavelet Frames over Bounded Domain 17 q-Dilated Orthonormal Wavelets ...
متن کاملCompactly Supported Multivariate, Pairs of Dual Wavelet Frames Obtained by Convolution
In this paper, we present a construction of compactly supported multivariate pairs of dual wavelet frames. The approach is based on the convolution of two refinable distributions. We obtain smooth wavelets with any preassigned number of vanishing moments. Their underlying refinable function is fundamental. In the examples, we obtain symmetric wavelets with small support from optimal refinable f...
متن کامل